Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 22(21): 215502, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21451225

RESUMO

Multi-walled carbon nanotubes (MWCNTs)-polymer composite-based hybrid sensors were fabricated and integrated into a resistive sensor design for gas sensing applications. Thin films of MWCNTs were grown onto Si/SiO(2) substrates via xylene pyrolysis using the chemical vapor deposition technique. Polymers like PEDOT:PSS and polyaniline (PANI) mixed with various solvents like DMSO, DMF, 2-propanol and ethylene glycol were used to synthesize the composite films. These sensors exhibited excellent response and selectivity at room temperature when exposed to low concentrations (100 ppm) of analyte gases like NH(3) and NO(2). The effect of various solvents on the sensor response imparting selectivity to CNT-polymer nanocomposites was investigated extensively. Sensitivities as high as 28% were observed for an MWCNT-PEDOT:PSS composite sensor when exposed to 100 ppm of NH(3) and - 29.8% sensitivity for an MWCNT-PANI composite sensor to 100 ppm of NO(2) when DMSO was used as a solvent. Additionally, the sensors exhibited good reversibility.


Assuntos
Amônia/análise , Gases/análise , Nanocompostos/química , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Dióxido de Nitrogênio/análise , Desenho de Equipamento , Nanocompostos/ultraestrutura , Nanotecnologia/métodos , Polímeros/química , Sensibilidade e Especificidade
2.
Nanotechnology ; 19(34): 345502, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-21730649

RESUMO

Vertically aligned multi-walled carbon nanotube (MWCNT) arrays fabricated by xylene pyrolysis in anodized aluminum oxide (AAO) templates without the use of a catalyst were integrated into a resistive sensor design. Steady state sensitivities as high as 5% and 10% for 100 ppm of NH(3) and NO(2), respectively, at a flow rate of 750 sccm were observed. A thin layer of amorphous carbon (5-50 nm), formed on both sides of the template during xylene pyrolysis, was part of the sensor design. The thickness of the conducting amorphous carbon layers was found to play a crucial role in determining the sensitivity of the resistive sensor. A study was undertaken to elucidate (i) the dependence of sensitivity on the thickness of amorphous carbon layers, (ii) the effect of UV light on gas desorption characteristics and (iii) the dependence of room temperature sensitivity on different NH(3) flow rates. Variations in sensor resistance with exposure to oxidizing and reducing gases are explained on the basis of charge transfer between the analytes and the CNTs which were modeled as p-type semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...